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ABSTRACT 

A discrete Eulerian model is described through which a set of centered finite difference 
equations for spherical media can be derived on the basis of clear physical principles, 
namely, the explicit conservation of mass, momentum, and energy. A solution procedure 
is proposed, and the associated stability study is presented. The method is illustrated 
for several problems of wave and shock propagation of earth media subjected to 
pressure pulses. 

I. INTRODUCTION 

Studies of the dynamic response of earth media to buried and surface explosive 
forces, particularly to nuclear explosives, have lately multiplied at an increasing 
rate. Because of the limitations of analytic solutions, much of these efforts have been 
directed to the development of numerical methods for high-speed computation. 
A primary consideration in such studies is the assurance of convergence of the 
numerical solutions to the corresponding true solutions, although too often this 
consideration is overlooked. In the absence of an exact solution for evaluating the 
validity of a numerical scheme, questions of convergence and error propagation are 
indeed difficult to answer. 

However, if a problem is formulated through a discrete conceptual model, the 
lack of guidance provided by exact solutions can be partially compensated by 
requiring that the model equations be derived making maximum use of the physical 
principles leading to the exact continuum equations. For example, if it is desired 
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to derive a discrete cell-analogue of the Eulerian conservation principles in integral 
form, such an analogue should be based on the explicit conservation of mass, 
momentum, and energy. Not only does this approach have the advantage of provid- 
ing a clear picture of the physical principles involved, it also cast more light on the 
source of the discretization errors of the model equations. This point of view is not 
new; its importance was perhaps first pointed out by Lax [3]. However, it has not 
always been consistently applied or thoroughly exploited, except in the Lagrangian 
treatment of small distortion propagation problems in solids [2]. An Eulerian 
model is presented here for the discrete formulation of spherically symmetric 
problems using this approach. 

To the knowledge of the authors, practically all of the existing Eulerian numer- 
ical schemes ([3], [4], [5], [6]) were developed to describe wave propagation in the 
hydrodynamic regime, where material distortions are so large as to render a purely 
Lagrangian treatment either impractical or unfeasible. There might equally be good 
reasons also for using an Eulerian cell-analogue approach for describing the dy- 
namic environment under low stress levels. For example, in the consideration of the 
effects of nuclear explosions in soil media, the material distortions may be large even 
in theranges where the state of stress is below the hydrodynamic range. Furthermore, 
the results of certain Lagrangian techniques appear to contain undesirable features; 
see, for instance, the “noise” in the results described in [7] which may not be totally 
attributable to questions of stability. This poses the question of whether an Eulerian 
treatment might not have intrinsic advantages as far as the smoothness of the calcu- 
lations is concerned. 

A serious difficulty associated with any Eulerian approach is the presence of a 
moving boundary, such as the problem of an expanding cavity considered herein. 
This difficulty can be resolved through a consistent use of the conservation state- 
ments, coupled with a suitable extrapolation procedure, which allows the boundary 
to move through the Eulerian grid in a smooth and continuous manner. 

A linear stability analysis of the interior difference equations indicates that the 
two-step numerical scheme devised for advancing the solution in the space-time 
domain can be made conditionally stable by introducing appropriate artificial 
viscosity terms of the linear type. Also, a comparison with an available exact 
solution in the small deformation range shows that the numerical results converge 
to the analytic solution as the space mesh is reduced. 

Two large-deformation problems are illustrated; one of these involves elastic- 
plastic wave propagation in granite, and the other is concerned with shock propaga- 
tion in playa silt. 

Although the model is described primarily for low stress wave propagation in 
solid media under isentropic conditions of flow, it can be easily adapted for purely 
hydrodynamic conditions, such as occuring in the close-in region of a nuclear 
explosion. 
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INTEGRAL FORM OF THE CONTINUUM CONSERVATION PRINCIPLES 

Consider an idealized medium in which no viscous friction and no heat con- 
duction can occur. If the Eulerian viewpoint is adopted, the conservation principles 
may be stated with reference to a finite “control volume” fixed in space, through 
which the medium is supposed to flow without discontinuities. Neglecting the 
action of body forces, the conservation equations read as follows: 

s ,;dr+ j m.ndS=O, 
s 

(conservation of mass) (1) 

I 7gdr+js$.ndS=jsfiidS, (conservation of momentum) (2) 

,,$dT+ss ; 
- 

em+idS= j f;+idS, (conservation of total energy) (3) 

where: 

p, Gi and e are the mass, momentum, and total energy per unit volume; 
f is the surface traction acting on a unit area of the generic surface; 
T is the control volume bounded by the surface S; and 
ti is the outward normal of S. 

In each of the above equations, the first integral on the left side can be interpreted 
as the time rate of accumulation of the respective total quantity (mass, momentum, 
energy) that is being conserved; let this quantity be denoted by B. The second 
integral on the left side represents the algebraic difference between the outflux and 
the influx of B through S. The integral on the right side of Eq. (2) is the total force 
exerted on T through S by the surrounding medium, whereas the corresponding 
integral in Eq. (3) is the rate of work performed on S by the surface traction f. 
Any dissipative mechanism within T is clearly ignored in Eq. (3). 

Consider now a control volume with spherical geometry, as shown in Fig. 1, and 
assume that the flow occurs only through S, and S, , in the directions normal to 
these surfaces as indicated by the arrows. If there is complete radial symmetry, 
f, p, m, and e are constants on S, and on S, . Under these conditions and applying 
the law of the mean of the volume integrals, Eqs. (1) through (3) reduce, respec- 
tively, to 

aP [ I at, 
T = m,A, - meAs, 

am L-1 at Q 
7 = WVdA - W/dA + -F, 9 

(4) 

E 1 $ 7 = [(e - f) ml&b - Ke - f) m/plA~ (6) 0 
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where: 

FT is the radial component of the total force s,fii dS; 

A, and A, are the areas of S, and S, , respectively. 

The subscripts 1 and 2 denote the constant value taken by the flow quantities on 
S, and S, . Also, [ Ia indicates that the time derivatives are evaluated at a proper 
point Q in 7. 

.i O,(i+l) 

J 
A8 I1 
T-b 

I 
I 

Direction of Motion 
1 ~,Ci) 

FIG. 1. Spherically symmetric Eulerian cell. 
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It should be clear that, dividing throughout by 7 and letting T + 0 in Eqs. (4) 
through (6) the continuum equations of spherically symmetric compressible flow 
in conservative form are obtained. 

II. DESCRIPTION OF THE MODEL 

CONSERVATION EQUATIONS FOR GENERAL INTERIOR CELL 

In the discrete cell-analogue model proposed herein, a spherically symmetric cell 
of finite dimensions and of fixed position in space is taken as the elemental unit in 
which the basic conservation requirements are to be satisfied (Fig. 1). 

The relevant field quantities are defined only at the center of each cell and 

Row b Row 0 

FIG. 2. Cross section of spherical model. 
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represent average values in the volume of the cell. It is clear that conservation 
requirements concerning a single cell will depend on the flow of the material 
across its boundaries, and therefore on the definition of the field values associated 
with the mass transport from cell to cell. For this purpose, consider the staggered 
array of cells shown for a cross section of the spherical model of Fig. 2. Because of 
the assumption of spherical symmetry, the field quantities at the boundary of a cell 
in a given row (e.g. row “a” in Fig. 2) are equal to the corresponding quantities 
defined at the center of the adjacent cell (e.g. in row “P). 

Assuming a discrete time variable, the conservation statements for a cell i over 
a finite time interval Lit, are as follows: 

M(i, t + At) = M(i, t) + OM,(i - 1) - OM,(i + I), 
(conservation of mass) 

T(i, t + Lit) = T(i, t) + d T,(i - 1) - d T,(i + 1) + LIZ(i), 
(conservation of momentum) 

ZZ(i, t + At) = ZZ(i, t) + LlH,(i - 1) - OZZ,(i + I) + Ll W(i), 
(conservation of total energy) 

(7) 

(8) 

(9) 

where : 

M(i, t), T(i, t) and H(i, t) are the total mass, momentum and energy in cell i at 
time t; 

dM,(i - l), flT,(i - 1) and OH,(i - 1) are the mass, momentum and energy 
of the material flowing into cell i during the interval At; 

OM,(i + l), OT,(i + 1) and dZZ,(i + 1) are the mass, momentum and energy of 
the material flowing out of cell i during dt; 

AZ(i) is the change of impulse on cell i during rl t; and 

d W(i) is the net work performed during d t by the forces acting on the boundaries 
of cell i at time t. 

Consider first the conservation of momentum, Eq. (8), and let 

T(i, t + At) = m(i, t + At) T(i); T(i, t) = m(i, t) T(i) 

where (see Fig. 1) 
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assuming that the term dr2/12r2(i) is negligible in comparison with unity. Further- 
more, the transport term dT1(i - 1) can be expressed as 

= [m”(i - 1, t*)/p(i - 1, t*)]r”(i - 1)dt Ap, AO, 
t < t* < t + At. 

Analogously, 

AT,, = [m”(i + 1, t**)/p(i + 1, t**)]?(i + 1)At Ap, A& t < t** < t + At 

The change of impulse AI(i) can also be written as 

AI(i) = j:“” F,(i, t) = F,(i, t> At; t<t,<t+At. (10) 

If a hydrodynamic state of stress p is considered and the forces acting on the cell 
boundary are taken as positive in the direction of increasing I, the change of 
impulse is 

AI(i) = [p(i - 1, I) r2(i - 1) - p(i + 1, t) r2(i + l)] At Ap, A0 

4 +2p(i,i)r(i)sin~ArAqAt+2p(i,f)r(i)sinIArABAt 

g [p(i - 1, I) r2(i - 1) - p(i + 1, I) r2(i + l)] At Ap, A0 

+ 2p(i, t) r(i) Ar Ap, Ad At, 

in which Ag, and Ad are regarded as small angles. If a nonhydrodynamic stress 
description is required, with a radial component u,. and two tangential components 
Q = u, , the above impulse term then becomes (see Fig. 1): 

AZ(i) = [cr,(i - 1, t) r2(i - 1) - q.(i + 1, t) r2(i + l)] At Ap, A6 
+ 2a,(i, t) r(i) Ar AT A0 At. 

Substituting the above expressions of T, AT and AZ into Eq. (8) and neglecting 
terms of order O(Ar2/r2), the following equation is obtained: 

m(i, t + At) = m(i, t) + -$ Cp(i - 1, t) + m2(i - 1, t*)/p(i - 1, t*) -p(i + 1, t) 

- m2(i + 1, t**)/p(i + 1, t**)] - $ [m”(i - 1, t*)/p(i - 1, t*) 

+ m2(i + 1, t*>/p(i + 1, t*>l + $ Pp(i, f) - p(i - 1, 9 
- PC + 1, 01 (11) 
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for the hydrodynamic case; whereas for the nonhydrodynamic case the corre- 
sponding equation is, 

m(i, t + At) = m(i, t) + $ [u& - 1, I) + m2(i - 1, t*)/p(i - 1, t*) 

- u,(i + 1, 2) - m2(i + 1, t**)/p(i + 1, t**)] + $ [20&, I) 

- u,(i - 1, f) - myi - 1, f)/p(i - 1, t) - U,(i + 1, Z) 

- m2(i + 1, I)/p(i + 1, I)]. (12) 

In the limit, when d t + 0 and dr -+ 0, Eqs. (11) and (12) yield, respectively, 

and 

am ab + m"lp) 2m% 
at=- ar 

-- 
r 

am ah + m”/d 30, - ue + m"/p) 
at=- ar - r 

(13) 

(14) 

Now if the above operations are applied on Eqs. (7) and (9), the following 
equations are obtained accordingly: 

p(i, t + Lit) = p(i, t) + $ [m(i - 1, t*) - m(i + 1, t**)] - $ [m(i - 1, t*) 

+ m(i + 1, t**)l (15) 

for the conservation of mass; and 

e(i, t + At) = e(i, t) + $ [e(i - 1, t*) m(i - 1, t*)/p(i - 1, t*> 

+p(i- l,t)m(i- l,t)/p(i- 1,t) 

- e(i + 1, t**) m(i + 1, t**)/p(i + 1, t**) 

- p(i + 1, t) m(i + 1, O/p(i + 1, f>l 

- $ [e(i - 1, t*) m(i - 1, t*)/p(i - 1, t*> 

+p(i- l,t)m(i-- l,t)/p(i- l,t) 

+ e(i + 1, t**) m(i + 1, t**)/p(i + 1, t**) 

+ p(i + 1, t) m(i + 1, Oldi + 1, 01, (16) 
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for conservation of total energy. Eq. (16) holds also for the nonhydrodynamic 
stress case, if p is replaced by gT 

Again in the limit as d t + 0 and dr + 0, Eqs. (15) and (16) reduce, respectively, 
to 

3P am 2m -- -_ 
at’ ar r’ (17) 

and 

ae 
at=- 

ab + e> m/p1 _ W + e> m/PI 
& r (18) 

It is easily recognized that the above equations for the model, Eqs. (1 I), (1.5), and 
(16), are space-centered difference analogues of the corresponding continuum 
differential equations, Eqs. (13), (17) and (18), respectively. It should be emphasized 
that Eqs. (1 I), (15) and (16) explicitly conserve mass, momentum, and total energy 
per unit volume; this stems from the fact that the elementary conservation require- 
ments for a cell, expressed by Eqs. (7) through (9), are analogues of the integral 
conservation laws of Eqs. (1) through (3). 

The following sources of discretization errors should be recognized. First of all, 
since dr cannot be arbitrarily small, the terms of order O(Ar2/r2) may not be 
negligible for small r as was assumed in the derivation of the above equations. 
This may give rise to appreciable errors for problems involving regions where r is 
small. Also the divergence type term [2p(i, i) - p(i - 1, I) - p(i + 1, I)] At/r(i), 
which appears in Eq. (1 I) and vanishes as dr + 0, is likely to produce undesirable 
errors when very small values of r are involved in the calculations. The same term 
may also cause spurious diffusion effects when large pressure gradients are acting 
over a length of less than 2 to 3 mesh lengths. 

Another source of possible discretization error is associated with t*, r**, etc. at 
which the transport and impulse terms should be evaluated. Since the time is 
increased by finite steps, the actual distribution of the field functions between 
generic time instants t and t + dt is not known, nor can it be computed. Conse- 
quently, the time instants t*, t**, etc. must be approximated with the generic 
points of the time grid. The choice of t * = t or t* = t + At, which are the 
obvious alternatives, will depend on the marching process used for the integration 
of the field variables. In this connection it should be pointed out that the model 
equations allow for the choice of integration procedures in which the inflowing 
transport terms are evaluated at t* = t, the outflowing terms at t** = t t At 
and the impulse terms at i = t + At/2. 
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EQUATIONS FOR A BOUNDARY CELL 

It was pointed out earlier that a difficulty inherent in any Eulerian approach is 
that concerned with the treatment of moving boundaries. If the close-in effects of 
contained nuclear explosions are simulated by an expanding pressure pulse applied 
on a spherical cavity, the cavity wall will undergo a continuous expansion such 
that its position will generally not coincide with the Eulerian grid. Consequently, 
if the position of the boundary at all times is required, as in the present case, some 
kind of Lagrangian description must be used at the cavity wall. This can be achieved 
by introducting a boundary cell of variable geometry, and leaving the treatment of 
the neighboring interior cells essentially unchanged. 

At a generic time after the onset of motion, the cavity wall will lie somewhere 
between two consecutive grid points, as illustrated in Fig. 3, and the cell in which 

_------ I_ ---------I- 
Ar AI------W 

“r; v(b,t’IAt 

FIG. 3. Boundary cell. 

the boundary lies is partially empty. In Fig. 3, IZ is the first of the fixed reference 
grids from the boundary, whereas b and c are Lagrangian points moving with the 
medium inside the boundary cell. In the following, the quantities labeled by b are 
defined at the cavity wall, whereas the quantities labeled by c refer to the center of 
the material in the boundary cell. These are the average quantities inside this 
portion of the variable volume. 

If no mass is assumed to flow into the boundary cell from the cavity, the conserva- 
tion statements for the boundary cell would be 

M(c, t + At) = M(c, t) - &f,(n), (19) 

T(c, t + At) = T(c, t) - oT,(n) + AI(c), P-9 

H(c, t + At) = H(c, t) - dH,(n) + Ll W(c). (21) 
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The basic difference with respect to the interior equations is that the volume of the 
material considered here is no longer constant but changes as a result of the bound- 
ary motion. 

Assuming that during the time interval d t the boundary advances from the 
position r(n) - A&t) to the new position r(n) - A&t) + v(b, t*)At, the volume of 
material in the boundary cell, then becomes, 

.(c,t)=r2(c,t)AE(t)dg,derr2(n)AE(t)[1 -+gq 44 (22) 

and 

T(C, t + At) g rye, t + At)[A&t) - u(b, t*) At] Ap, Ae 

s r”(n) A&t) [ 1 - $$ - u(b, t*)At 
4%) 1 

1 -2AHt) 
r(n) 11 , (23) 

where O(Af/r2) and O(At2) terms have been neglected. 
Substituting Eqs. (22) and (23) into Eqs. (19) and (20), respectively, and com- 

puting the outfltix and impulse terms exactly as for the interior equations yield 

P(C, t + 4 = b(c, tW(Orl(t) - m(n, t**Wl/[~~(O~W - @, t*)4OAtl (24) 

for the conservation of mass, and 

m(c 
, 

t + At) = be, t> A&t) $t> - m2h t**) At/h t**) + Wdf)l 
[A&t) r)(t) - ~(6 t*> 4) 4 (25) 

for the conservation of momentum (with hydrodynamic stress conditions), where 

4%) 
7(t) = 1 - r(n) 3 

c(t) = 1 - T, 

and, q,(t) = {P(t) - p(n, t) - 2A&t)[P(f) - p(c, f)]/r(n)} At. Here, P(t) is the 
applied boundary pressure. Eq. (25) holds also for nonhydrodynamic stress 
components, provided wh is replaced by 

An expression for the conservation of energy can be similarly obtained. 
It should now be observed that in Eqs. (24) and (25), the boundary velocity 

v(b, t*), a Lagrangian quantity, appears as an extraneous unknown. This quantity 
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may be determined by extrapolation, which will generally depend on the integration 
method used in the overall solution process. One possible extrapolation method will 
be discussed in detail in the next section. 

It is interesting to note that, with a slight rearrangement of terms, in the limit 
as dt -+ 0 and A[ -j 0, Eqs. (24) and (25), yield 

ub = u, , 

and from Pa - pr = pTv,(v, - vb), 

where the subscript b denotes boundary quantities, and the subscript n denotes 
quantities at point n of the boundary cell. 

These two apparently trivial relationships can be interpreted by considering the 
cavity wall as a contact discontinuity. Since no influx of mass flow occurs across the 
boundary, Eqs. (26) and (27) represent a degenerate case of the Rankine-Hugoniot 
equations. 

III. CALCULATION PROCEDURE 

NUMERICAL ANALYSIS 

The actual solution of the boundary and interior finite-difference equations of the 
model requires a stable marching process in the space-time domain. The choice 
of such a process is not unique. This is especially true for the boundary equations 
and the extrapolation procedure required to describe the motion of the cavity wall 
when the boundary velocity is not a prescribed input quantity. 

For simplicity, only the hydrodynamic condition is described here. The same 
numerical method applies also to the nonhydrodynamic case, with one major 
difference, which will be discussed later. 

The marching process involves updating the field quantities from a generic time t 
(at which all quantities are supposed known) to time t + At. This process consists 
of two sweeps, the second sweep being essentially an iteration. The computational 
steps which constitute the first sweep are as follows: 

(1) With Eq. (25), and using t* = t** = f = t, m(c, t + At) is calculated 
for the boundary cell. Similarly, the momentum values of all interior cells, i > n + 1, 
are updated using Eq. (11) with t* = t** = I = t. 

In order to enhance the stability properties of Eq. (11) in the presence of shock 
discontinuities, artificial viscosity terms are added to the pressure terms (to be 
discussed later). 
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(2) On the basis of the interpolation formula 

w, t)/r(n + 111 = MC, t + dt)/m(n + 1, t + dt)P, (28) 

the decay parameter (or is obtained. The momentum at n is then computed as 

nt(n, t + At) = m(n + 1, t + Llt)[r(n)/r(n + l)rl. (29) 

(3) With the knowledge of m(n, t + At), the values of p at all the interior 
cells starting from n + 1 are updated using Eq. (15) with t* = t** = t = t + dt. 
The corresponding values of p and of the local sound velocity c are obtained from 
the given pressure-density relationship. 

(4) The boundary pressure is a prescribed input quantity; consequently, once 
loading or unlaoding is specified, p is uniquely determined. Hence, from the 
function p = f(p), the density at the cavity is calculated as, 

Ah t + 4 =f-‘W + 41 

(5) A value of the decay parameter CX~ is computed from 

r(b, t)/r(n + 1) = [p(b, t + dt)/p(n + 1, t + dt)P 

Using this value of c+ , both p(c, t + At) and p(n, t + At) can be calculated by 
means of an interpolation equation similar to Eq. (29). The updated velocities 
for all points, except the boundary point b, are then obtained simply as 

u(i, t + Ll t) = m(i, t + At)/&, t + At), forall i>-n+ 1. 

(6) The boundary velocity v(b, t + At) is computed by a least-square linear 
extrapolation using the values v(c, t + At), u(n + 1, t + dt) and u(n + 3, t + At); 
namely, the values at the center of the first three cells in the same row, including 
the boundary cell. The weights for v(c, t + At) and v(n + 1, t + Lit) are the masses 
M(c, t + d t) and M(n + 1, t + d t), whereas the weight for u(n + 3, t + d t) is the 
mass M(n + 3, t + d t) multiplied by a factor which is inversely proportional to 
M(c, t + At); or 1 - M(c, t + dt)/M,(c, t + At). Here M, is the mass contained 
in the boundary cell before the emptying process began. This scheme is adopted 
for the following reasons: 

(a) The mass in a boundary cell decreases as the cavity expands; consequently 
the accuracy of u(c, t + At) may decrease accordingly. 

(b) The interpolation and weighing procedure should produce a smooth 
transition as the cavity expands from an empty cell to a new boundary cell con- 
taining its full mass. The above choice of the weights provides the required smooth- 
ness. 
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The above six steps complete the calculations for the first sweep. At this point 
all the field variables are updated at all the grid points. The second sweep then uses 
the newly computed values at all the grid points in the same way as an implicit 
scheme. The calculational steps are exactly the same as for the first sweep, except 
that Eqs. (29, (11) and (15) are now as follows: 

m,(i, t + At) = m(i, t) + $ [pl(i - 1, t + Lit) + ql(i - 1, t + At) 

+ m,yi - 1, t + dt)/pl(i - 1, t + or> 

- Pl(i + 1, t + At) - q1(i + 1, t + At) 

- rn12(i + 1, t + At>/& + 1, t + At)] 

+ nQ2(i - 1, t + At)/p& - I, t + At)] 

+ g ~Pl(~, t + At> - PIG - 1, t + At> - PlC + 1, t + 41; 

(114 
where ql is an artificial viscosity term. 

pz(i, t + Or) = p(i, t) + $ [m& - 1, t + At) - m,(i -I- 1, t + or)] 

- g [m,(i - 1, t + At) + m,(i + 1, t + AC)]. (154 

Here the subscript 1 is used to denote the quantities obtained at the end of the first 
sweep, whereas the subscript 2 refers to the final quantities for time t + d t. 

Once the final value v,(b, t + At) is computed, the position of the boundary with 
reference to point n can be updated using 

A&t + At) = d&t) - u,(b, t + At) At. 

If d&t + At) < 0, it means that the boundary cell has been completely emptied; 
in this event LIP = dr is set for the next cycle of computation and the boundary 
cell is automatically advanced to the next cell of the same row. 

581/3/2-6 
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No artificial viscosity terms were used in Eqs. (25) and (25a) since this was found 
to yield a stable behavior of the solution near the cavity. 

Certain modifications are required in the treatment of the boundary when a 
nonhydrodynamic stress condition is considered. First of all, the computational 
scheme must permit the calculation of both the mean pressure and the stress 
deviator at the cavity wall. These two stress components must necessarily be 
distinguished in order to allow the determination of the material density at the 
boundary from the given p-p relationship. For this purpose it is assumed that the 
ratio of the mean pressure to the calculated radial stress at the cavity is the same as 
that of the first interior cell, which has been obtained from the previous cycle of 
computation. 

Once the boundary values of the pressure and stress deviator are determined at 
the beginning of each time step, the procedure described above for the hydro- 
dynamic case remains valid when the appropriate momentum equations are used. 
The deviatoric stresses sT(c, t + At) and s&r + 1, t + d t) are interporlated using 
the boundary value and the corresponding deviator of the first interior cell 
s&z + 1, t + At) through an equation similar to Eq. (29). The stress deviators 
of the interior cells are computed from the velocities and the material moduli 
through an appropriate constitutive relationship. 

TRUNCATION ERROR AND STABILITY 

Questions of stability arise from the use of Eqs. (11) and (15) in Steps (1) and (3) 
of the first sweep of the computational algorithm. If @ and p represent an exact 
solution of Eqs. (13) and (17), a Taylor expansion about the point (i, t) will show 
that the truncation errors of Eq. (11) (with viscosity terms q added) with 
t* = t** = i = t is 

i?2+;2?$ At + O(A9). 

Likewise, the corresponding truncation error of Eq. (I 5) with t * = t * * = i = t + d t, 
is 

t 
1 azjj a%i 2 aiii -- 
2 at2 + arat + ; -& + WW. 

If the integration scheme is stable, the truncation errors arising from the finiteness 
of At are likely to be much smaller than the errors arising from the finiteness of 
Ar. In practice, the choice of Ar is dictated by the storage capacity and the speed of 
a computer. Consequently, the space mesh is invariably coarser then the time mesh. 
Therefore, aside from the diffusion term aq/ar, the dominant truncation error 
terms are of order O(Ar2). This is a direct consequence of the centered difference 
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formulation of the transport terms in the model equations. The scheme considered 
here does not require any more stringent stability requirements than other differ- 
encing schemes [8]. 

A linear stability analysis of the interior difference equations is outlined below; 
this is intended primarily to show the need for artificial viscosity terms. The 
relevant equations to be analyzed are the following: 

m(i, t + At) = m(i, t) + $ Ip(i - 1, t) + q(i - 1, t) + m2(i - 1, t)/p(i - 1, t) 

- p(i + 1, t) - 4G + 1, f) - mV + 1, t)/p(i + 1, t)] 

+ $j [mYi - 1, t)/p(i - 1, f> + mYi + 1, Wp(i + 1, f>l 

+ $j Pp(i, t) - p(i - 1, t) - p(i + 1, t)]; 

and 

p(i, t + At) = p(i, t) + $ [m(i - 1, t + At) - m(i + 1, t + At)] 

- -$j [m(i - 1, t + Lit) + m(i + 1, t + At)], (31) 

in which Eq. (30) is obtained from Eq. (11) for t* = t** = t = t by adding the 
terms q(i, t), and Eq. (31) is Eq. (15) for t - t * - * * = t = t + dt. The artificial 
viscosity is taken as in [8], 

q(i, t) = Bp(i, t) c(i, t)[m(i - 1, t)/p(i - 1, t) - m(i + 1, t)/p(i + 1, t)], 

where B is a constant to be determined by numerical experiment. Stability may be 
analyzed by first obtaining the linearized equations of the first variation of Eqs. (30) 
and (31) (see Chap. 5 of Ref. [9]) and then testing the local time growth of a test 
solution in the form of a Fourier component as suggested by von Neumann for 
linear equations. It can thus be shown that the amplification factors g of the equa- 
tions of first variation satisfy 

g2 + [ipAv(2 + pBA2c) + pBA2c + p2A2(c2 - v”) - 21 g 
+ 1 - 2ipAv - pBAec = 0, (32) 

where 

i=d/-1; A = 2 sink; and p = At/Ar. 
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The soundspeed c and the velocity v are regarded as locally constant quantities 
Von Neumann’s criterion predicts local stability if I g 1 < 1. Now let 

pAv = M; pA2Bc = Q; Cc2 - v2) pA2 - 2 = K, 

and, 

81 = [M2(2 + Q>2 + (K + Q)“]l’“; /!I2 = [4M2 + (1 - Q2)2]1’2. 

An algebraic criterion for finding upper bounds to the moduli of the roots of an 
equation containing complex coefficients [lo], says that 1 g 1 < 1 if the inequalities. 

1 - Bl - Be > 0, (33) 

1 - A > 0, (34) 

are both satisfied. It should be emphasized that if B = 0, no value of M and K can 
satisfy the inequality of Eq. (33). This means that stability of Eqs. (30) and (31) 
cannot be assured if no artificial viscosity terms are used. 

Implicit in the equations under consideration is the assumption that u2/c2 < 1. 
Under this condition the inequalities of Eqs. (33) and (34) lead to the following 
stability requirements, 

and 

c At/Ar < d/2, (35) 

c At/Ar < (B2 + 3)li2/2 - B/2. (36) 

For example, if B = 0.5, Eq. (36) yields 

c AtjAr < 0.65 (: d2/2. 

For problems involving shock propagation, stability analysis is of little value. 
For these situations, the following inequality [9] 

(c + U) At/Ar < 1 (37) 

where U is the shock velocity, is used as a guide. 
Stability requirements for the equations of the second sweep are not discussed. 

Numerical evidence show that, if the calculations of the first sweep are stable, the 
iteration performed in the second sweep is also stable. 
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IV. APPLICATIONS 

COMPARISON WITH ANALYTIC SOLUTION FOR SMALL DEFORMATION 

An exact solution for the propagation of an elastic shock wave generated by the 
quasi-static expansion of a gas in a spherical cavity is given in Ref. [Ill. The 
solution is valid only for linearly elastic materials and for small displacements. 
The cavity is assumed to be filled with a gas and the pressure P(t) is given by 

P(t) = PlJl - 3y+, WI, (38) 

where P, is the initial pressure, y is the ratio of specific heat, and u(a, t) is the radial 
displacement of the cavity of initial radius a. 

The present calculations were performed assuming zero shear modulus, i.e. a 
hydrodynamic state of stress, and a bulk-type elastic law 

p=K(;-1I) (39) 

was used, in which K is the bulk modulus. The following values were assigned for 
the parameters in the present problem: 

P,, = 4 ksi; y = 513; a = 20in.; K = 5235 ksi; p. = 2.67 gm/cm3. 

A plot of the velocity-histories at the cavity and at r = 50 in., during the first 
millisecond, is shown in Fig. 4. It should be realized that the comparison between 
the exact and the numerical solution is meaningful only for the early time of up to 
approximately 0.5 or 0.6 msec. As the velocities (and the displacements) grow 
larger than a certain limit, the analytic solution, which is based on the assumption 
of small deformations and constant density, is bound to yield lower values than the 
present numerical solution, which is based on the assumption of a hydrodynamic 
flow. Up to about 0.5 msec., a progressive refinement of the mesh size from 4 to 
0.5 in. clearly shows the convergence of the numerical results to the exact solution. 
The convergence is particularly significant for the cavity velocity, which is cal- 
culated by extrapolation from the interior field. Since the gradient of velocity is 
steep in the neighborhood of the cavity, as may be seen from Figs. 5 and 6, the 
present problem constitutes a rather severe test for the proposed treatment of the 
boundary. . 

The spatial distribution of the velocities is shown at two different times, t = 0.5 
and t = 1.0 msec. in Figs. 5 and 6, respectively. Figure 5 shows that significant 
errors occur only at the shock front; this is a result of the smoothing effect of the 
viscosity terms. However, since the particle-velocities at the shock front are much 
smaller than the peak velocities found at the cavity, this error appears to be 
negligible. 
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The above results were obtained using linear viscosity terms, as given by Eq. 32, 
with B = 0.5. A constant time step determined by the condition 

c4t - = 0.2 
4r k = w/Po)1’21 

was found to be quite satisfactory. 
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ELASTIC-PLASTIC WAVE PROPAGATION IN GRANITE 

The second application is concerned with the calculation of ground motion in the 
low stress region of the Hardhat experiment, which is a 5-kiloton nuclear explosion 
in granite that took place at a depth of 950 ft at the Nevada Test Site. Because a 
number of particle acceleration and velocity measurements were obtained, the 
Hardhat experimental data provide a good basis for evaluating the validity of the 
numerical calculations. Detailed descriptions of the data and their sources can be 
found in Refs. [12] and [13]. 

A nonhydrodynamic stress description is assumed with u, = -p + s, and 
ue = -p - s,/2, where s, = 2(a, - CT&/~ is the stress deviator for a spherically 
symmetric problem. In the stress levels of interest, which are below 4 kilobars 
(= 58 ksi), the flow may be regarded as isentropic. Thus, it is adequate to assume 
a linear pressure-density relationship as given by Eq. (39). A bulk modulus 
K = 361 kilobars = 5235 ksi and a shear modulus G = 315 kilobars = 4570 ksi 
were chosen. With these values the dilatational c and shear c,~ velocities calculated 
on the basis of the elastic relationships 

C’PO = K + ; G, cs2po = G, 

where p. = 2.67 gm/cm3 is the initial density of granite, agree with the in-situ 
seismic measurements of 17,580 fps and 10,000 fps, respectively. 

Two sets of calculations were performed. In the first set the deviatoric stress is 
governed by the equations of Grigorian [14]; namely, the yield level is a function 
of the pressure and the associated flow rule is elastic-perfectly plastic. For a spheri- 
cally symmetric state of stress, the yield criterion can be written as 

sr 2 = F(p) = 4 (ap + by, (40) 

in which 01 and b are experimentally determined constants, and the elastic-plastic 
flow rule is 

where 

A= 
2G.q. ($ - fj - F’(~)$ 

2FCp) 

is a plastic multiplier. The deviatoric stress is plastic only when Eq. (40) is satisfied 
and h > 0. For granite (II = 0.895 and b = 0.5 ksi were assumed. 
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The second set of calculations makes use of the same elastic law, i.e. Eq. (41) 
with h = 0, but with a von Mises’ yield criterion. The latter implies that when 
plastic flow commences, the stress deviato-0.1116  Tc -0273h 0 ,  
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histories of Fig. 9. The von Mises hypothesis leads to the formation of radial cracks 
immediately following the main pulse when the propagation becomes elastic; 
this is caused by tangential stresses exceeding the assumed tensile strength of 
granite. The radial stress profiles of Fig. 8 shows that the transition from the 
cracked to the intact region occurs with an abrupt jump; a recent theoretical 
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analysis by Grigorian [17] actually demonstrates that, in a similar problem, the 
cracked front propagates like a rarefaction shock, traveling at a subsonic speed. 
The numerical results presented here confirm this prediction and show that the 
rarefaction front is correctly propagated by the artificial viscosity terms. No cracks 
arise when Eqs. (40) and (41) are used because in this case the tensile stresses that 
are developed are practically negligible. It should also be observed from Fig. 9 
that the difference in the time of arrival of pulses becomes rather significant at the 
larger distances (almost 2 msec at 445 ft). The discrepancy in the arrival time 
between the calculated and observed pulses at 360 ft (see Fig. 9) may be attributed 
to an error in the determination of the correct position of the instrument [16]; 
the agreement in the rise times and peak stresses with the measured values is 
otherwise good. 

For this group of calculations a mesh length of 20 in. and linear viscosity terms 
with B = 0.2 were used. The time increment d t was chosen such that 

cAt 
- = 0.3. 
Ar 

SHOCK WAVE PROPAGATION IN PLAYA SILT 

The last application described in this study is concerned with the propagation 
of shock waves resulting from the compressibility or compaction of a granular 
medium. For this purpose, the properties of a typical soil from the Nevada Test 
Site, known as playa silt are used. A number of static and dynamic confined 
uniaxial tests on playa silt, for pressures up to about 1.5 kilobars (= 22 ksi), were 
performed by Hendron and Davisson [18]. From these data it is possible to obtain 
pressure-density curves corresponding to the indicated stress level. A typical curve 
chosen for this purpose is shown in Fig. 10. The dashed lines show the possible 
unloading paths; in the lower pressure region loading and unloading are assumed to 
follow the same path, in accordance with the assumptions of Grigorian’s theory 
[14]. The curve of Fig. 10 is related to a specimen with a relatively high initial water 
content (17.3 %), which explains the rapid attainment of complete compaction 
and the very steep slope in the upper range. Assuming a density at rest, 
p,, = 1.69 gm/cm3, this slope corresponds to a sound velocity of approximately 
3300 fps, which is close to that corresponding to the compressibility of water. For 
computational purposes, the lower portion of the curve was approximated by means 
of a fifth degree polynomial, such as to give a smooth and continuous slope 
throughout. Also, the straight portion of the curve was extrapolated with a constant 
slope up to about 30 ksi. 

Given the small shear rigidity of the material, a hydrodynamic stress description 
was adopted. 
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P /P, 

FIG. 10. Pressure-density curves for playa silt. 

An initial cavity radius of 5000 in. is assumed and the initial cavity pressure is 
specified by Eq. (42) with prnax = 30 ksi (2.07 kilobars) and t, = 10 msec. The 
space mesh Ar was selected such as to define a shock over a reasonably small zone. 
Using the linear viscosity terms of Eq. (32), with B = 0.4, the effective shock 
thickness is spread over 3 mesh lengths; thus, a value Ar = 10 in. was found to 
provide an acceptably fine description of the jumps. However, differences in the 
time of arrival of the signals were detected by varying Ar from 5 to 20 inches. This 
is clearly shown by the velocity-histories of Fig. 11 and by the shock and precursor 
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paths of Fig. 12. The difference in the arrival times of the presursor signal for 
dr = 5 in. and dr = 20 in. is about 2 milliseconds. This indicates that large mesh 
sizes may produce an unacceptable diffusion of the signals. 

A special group of calculations was performed with the purpose of comparing 
the relative effectiveness of linear vs. quadratic artificial viscosity terms. The 
quadratic terms used were of the von Neumann-Richtmyer type, or 

di, 0 = Qa”[p(i, t> + p(i, t - 4lbei + 1, type + I,0 
- m2(i - 1, t)/p(i - 1, t)], 

and a = 1.6 was selected after some numerical experiments. The pressure profiles 
obtained with the two types of viscosity are compared in Fig. 13. The viscosity 

Time, msec. 

FIG. Il. Effect of mesh size on velocity-histories 

terms were used during both loading the unloading and a mesh length of 20 inches 
was used. It is evident from Fig. 13 that the quadratic terms do not provide sufficient 
damping for the oscillations immediately behind the shock, whereas the linear 
terms yield remarkably smoother profiles without causing a significant erosion of 
the jump. Subsequent calculations were, therefore, performed with linear viscosity 
terms and B = 0.5. Since the shock velocity U is practically constant (approxi- 
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mately 26.5 in/ms) over a large range and lower than the highest sound velocity 
attainable in the medium, a time step determined by the condition 

(c $ U) g = 0.3 (43) 

WOO’ 
0 

I I I 
5  10 15 

Time, msec. 

FIG. 12. Shock and precursor paths for varying Ar. 

was found adequate. The results of the final calculations are plotted in Figs. 14 
through 17. The time-histories of particle velocities and are discontinued when 

these locations are reached by the expanding cavity. It should be observed from 
Fig. 16 that, at later times the peak velocities no longer occur at the jump but at the 
cavity. 
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FIG. 16. Velocity profiles (playa silt). 
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FIG. 17. Pressure profiles (playa silt). 

The above results were obtained using the viscosity terms in loading only; 
namely 

4th 0 # 0, when ?l(i - 1, t) - v(i + 1, t) > 0, 

4G, 1) = 0, otherwise. 

These results illustrate the smoothness of the solutions obtained with the proposed 
scheme. 

V. CONCLUSIONS 

The discrete Eulerian model described here is useful for a centered finite difference 
formulation of the conservation equations of continuum mechanics. A computa- 
tional scheme for treating the initial-boundary-value problems of an expanding 
spherical cavity is proposed. However, the associated stability analysis is limited 
only to the equivalent initial-value problem. Convergence is illustrated with specific 
calculations. 

Numerical solutions obtained for a number of problems indicate that the results 
are smooth and devoid of “noise” that has generally plagued other numerical 
schemes. 



258 FACCIOLI AND ANG 

REFERENCES 

1. P. D. LAX, Commun. Pure Appl. Math. 7, 159-193 (1954). 
2. A. H.-S. ANG, “Numerical Approach for Wave Motions in Nonlinear Solid Media.” Proc. 

Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, Nov. 1966, 
153-717. 

3. W. E. JOHNSON, OIL, “A Continuous Two-Dimensional Eulerian Hydrodynamic Code.” 
General Atomic Report GAMD-SSSO, January 1965. 

4. W. F. NOH, “CEL: A Time Dependent, Two Space Dimensional, Coupled Eulerian- 
Lagrangion Code.” Report No. UCRL-7465, Univ. of California, LRL, August 1963. 

5. C. S. GODFREY, D. J. ANDREWS et al., “Calculation of Underground and Surface Explosions.” 
Report No. AFWL-TR-56-211, Air Force Weapons Lab., June 1966. 

6. M. RICH, “A Method for Eulerian Fluid Dynamics.” Report No. LAMS-2826, Los Alamos 
Scientific Laboratory, March 1963. 

7. F. G. P. SEIDL, “SOC-A Numerical Model for the Behavior of Materials etc.” Report 
No. UCID-5033, Univ. of Cal., July 1965. 

8. A. G. GENTRY, E. M. MARTIN, and B. J. DALY, J. Comp. Phys. 1, 87-118 (1966). 
9. R. D. RICHTMYER, K. W. MORTON, “ Difference Methods for Initial-Value Problems.” 

2nd Edition, Interscience, New York (1967). 
10. J. V. USPENSKY, “Theory of Equations.” McGraw-Hill, New York (1948). 
11. H. F. COOPER, “Generation of an Elastic Wave by Quasi-Static Isentropic Expansion of a 

Gas in a Spherical Cavity etc.” Report No. AFWL-TR-66-83, Air Force Weapons Laboratory, 
September 1966. 

12. R. H. BISHOP, ‘Spherical Shock Waves from Underground Explosions,” in “Close-in 
Phenomena of Buried Explosions.” Report No. DASA-1382, Sandia Corporation, May 1963. 

13. F. M. SAUER, “Ground Motion from Underground Nuclear Explosions,” in “Nuclear 
Geoplosics, Part 4: Empirical Analysis of Ground Motion and Cratering” Report No. 
DASA-1285 (IV). 

14. S. S. GRIGORIAN, Prikl. Math. Mekh. 24, 1057-1072 (1960). 
15. S. S. GRIGORIAN, Prikl. Math. Mekh. 31, 643-669 (1967). 
16. HEUSINKFELD et al., “Stress History Measurements with Piezoelectric Crystals.” Hardhat 

Preliminary Report, Project 26.21, K Div. LRL, 1962. 
17. T. R. BUTKOVICH, “Calculation of the Shock Wave from an Underground Nuclear Explosion 

in Granite.” Proc. 3rd Plowshare Symposium, Report No. AEC TID-7695, Univ. of 
California LRL 1964. 

18. A. J. HENDRON and M. T. DAVISSON, “Static and Dynamic Behavior of a Playa Silt in One- 
Dimensional Compression.” Report No. RTD TDR-73-3078, 1963. 


